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Abstract We sNdy the magnetic properties of the one-dimensional Hubbard model under fixed 
chemical potential. By using derivatives of the Lieb-Wu equation, the magnetization c w e  at 
zero temperahlre is obtained for various fixed band fillings and/or chemical potentials. As a 
well !mom result in the case of the 6x4 band filling, there is only one second-order p h s e  
transition al magnetic saNration. On the dher hand, when the chemical potential is fixed instead 
of lhe electron density, it is found thal  ere is an a$jitional phase vansition in the magnetization 
cwe.  

Low-dimensional systems have drawn much attention for several decades. One of the 
reasons is that techniques for manufacturing materials of quasi-low-dimensional systems 
have developed and that properties which are characteristic to lowdimensional systems 
have been observed. Another r m o n  is that one-dimensional systems are easy to handle 
and that exact solutions are obtained in some cases. The investigation of them is helpful to 
understand the nature of higher-dimensional systems. The one-dimensional Hubbard model 
is the simplest model for itinerant electrons on a lattice and has attracted much interest for 
a long time [l]. The one-dimensional Hubbard Hamiltonian in a magnetic field h is gjven 
as follows: 

i 

where at, (ai,) is the creation (annihilation) operator of the elecbon with the spin U at the 
ith site, nio the number operator atuio and /I the chemical potential. For simplicity, the 
hopping integral is taken to be unity. The eigenvalue problem of this model is reduced to 
a set of integral equations (Lieb-Wu equation 121) by means of the nested Bethe unsatz 
[3]. For the half-filling and singlet case, an explicit solution of the integral equations is 
derived as the closed form [21. The magnetic properties of the one-dimensional Hubbard 
model have been investigated by several authors. The magnetization curve for the half- 
filled band has been obtained by Takahashi [4]. Shiba [5] calculated the zero-field magnetic 
susceptibility for arbitrary fillings, but for repulsive (positive) U only. Extending these 
works, the zero-field magnetic susceptibility at finite temperature is derived by Kawakami 
etnl [6] by solving the thermodynamic Bethe m u t z  equations U]. The magnetization curve 
for several electron densities at negative U was studied by Woynarovich and Penc [SI. In 
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this paper we study the magnetic properties of the one-dimensional Hubbard model with 
repulsive interactions. The magnetic properties of the positive-U Hubbard chain, which 
has no gap in the spin excitation 19,101, are very different from those of the negative one, 
which has a gap. 

Recently the technique for high-field magnetic measurement have been improved and 
various kinds of experiment have been done. In order to understand magnetic properties of 
low-dimensional systems, it is interesting to study the low-dimensional magnetic behaviour 
theoretically. It has been shown that there are additional phase transitions for the SU(M) 
quantum spin chain [ l l ,  121. In the present paper we calculate the magnetization curve for 
arbitrary fixed electron densities and/or chemical potential and show that there is a similar 
phase transition in the electron system. 

We start by recalling the integral equations given by Lieb and Wu [2] for the ground 
state energy of the one-dimensional Hubbard model with fixed magnetization and fixed 
number of electrons: 

8Um(A)dA J -E  U 2  + 16(~in k -A)' 
2xpl(k) = 1 +cos k 

The integration bounds B and Q are determined by 

where N is the total number of electrons, Na the number of lattice sites and N L  the number 
of down-spin electrons. The energy per site E and the magnetization per site m are given 
by 

E 
N.  

€ ( n , m )  = - = -2 

Following Woynarovich and Penc's procedures [SI, we can derive formulas for the magnetic 
field h and the magnetic susceptibility xm. 

where D = 511(Q)&(B) - ~ I ~ ( Q ) ~ Z I ( B )  and our notation relies on Woynarovich and 
Penc [8].  The magnetic field h and the magnetic susceptibility x,,, depend on the electron 
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densities n in (4) and the magnetization m in (7) through the integration bounds Q and'B. 
The chemical potential p and the charge susceptibility xc are also given by 

A detailed derivation can be found in [SI, [13] and [14]. Using these equations (2Hl l ) .  one 
can deal with various limiting cases analytically. In the case of B --t CO, which corresponds 
to the singlet state, the zero-field magnetic susceptibility for arbitrary fillings is reproduced 
[5].  The case of the magnetic saturation corresponds to B -+ 0. At the saturation field h,, 
the spins of all electrons are aligned in the direction of the external field. One can determine 
the saturation field h, as follows: 

-(4/n)cos(xn) tan- ' ( (4/~)  sin(an)) 
+ ( 4 / a ) , / ~ t a n - ' 1 ( 4 / ~ ) J ~ t a n c n n ) )  - ~n 

f o r O < n < f  

This formula has already been derived by several authors [15,16,17]. At the saturation field 
h,, the magnetic susceptibility and the chemical potential p e  can also be calculated. 
They lead to 

For other values of Q and B ,  these integral equations are solved numerically. In order 
to obtain these quantities (4x11). the integral equations (2) and (3) are converted into 
matrix equations, so that the magnetic field dependence of the magnetization for various 
fixed densities and/or chemical potentials is calculated. 

The magnetization curves for various values of the band filling at (I = 3 are shown in 
figure 1. The magnetization saturates m = n/2 at the finite field h,. Figure 2 shows the 
magnetic susceptibilities xm as a function of the magnetic field h for various fixed electron 
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ngure 1. Magnetization c w e s  ofthe one-dimensional Hubbxd model with V = 3 for various 
f w d  densities n. 

Figure 2. Magnetic susceptibilities of the one-dimensional Hubbard model with U = 3 for 
various fixed densities n. 

densities. The susceptibility of the half-filling case is divergent at the magnetic saturation 

So far, we have studied the magnetic properties with given electron densities. We 
now investigate those for fixed chemical potential instead of electron densities. The 
magnetization curves m versus h for various values of the chemical potential are shown in 
figure 3. Each curve consists of two parts, a broken curve and a solid one. The broken 
curve shows the magnetization versus the external magnetic field in the subspaces N$ = 0. 
In this case, the solution of the integral equations becomes 

1 
2a 

hc 1151. 

Pi,N,=O(k) = - PZ.N,=O('\.) = 0. (15) 

We substitute the solution (15) into (6) and (7) and eliminate Q, which leads to the result 
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h 
Figure 3. Magnetization of the onedimensional Hubbard model with U = 3 for various 
chemical potentials p. As the chemical potential becomes high, the critical field h. shifts from 
left to right. 

(16) 
i .  

lr 
eN,=o(m) = --stn(km). 

The magnetization as a function of the magnetic field in the chemical potential p. is 

(17) 
1 

2z m = - cos-' {-@+ + h) l .  

The solid curves in figure 3 are drawn by solving a set of integral equations (2), (3), (7) 
and (8) on the condition N, # 0. As shown in figure 3, each curve has a cusp at a critical 
field h, = h&), implying the field-induced phase transition at zero temperature. Since 
the magnetization curve is continuous, the phase transition is of second order. The critical 
field h, as a function of the chemical potential is given by eliminating n from (12) and (14) 
(see figure 4). Since the ground state energy as a function of U is shown to be analytically 
continued at U = 0 for non-zero magnetization [NI, the critical field h, is also analytically 
continued at U = 0. In the case of the fixed chemical potential, the magnetization saturates 
at h, = 4 - 2p. 

We clarify the mechanism of this phase transition. Figure 5 shows schematically the 
configuration of the electrons in the magnetic field and the chemical potential. A circle 
denotes a site, an up arrow an up-spin electron and a down arrow a down-spin electron. 
In the first row, the magnetic field h is equal to zero and the chemical potentials are in 
the order of p1 c pz < p3. The number of electrons is obtained as a function of the 
chemical potential p by solving /I = p(n) .  The higher the chemical potential is, the 
larger the number of the electrons is. In the second column of figure 5 ,  the magnetic field 
dependence of the electron configuration is exhibited. As the magnetic field h becomes 
high, the spins of the electrons are overturned in the direction of the magnetic field h. This 
behaviour corresponds to the solid curve in figure 3. At h, all of the spins are aligned. 
When the magnetic field is higher than h,, the number of electrons with up spin increases 
and then becomes the half-filled one at k,. This behaviour corresponds to the broken curve 
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Figun 4. The critical magnetic held h, as a function of the chemical potential p for various 
values of U. 

in figure 3. As the chemical potential increases, the value of the critical field h, becomes 
large and this behaviour is found in figure 4. From figures 4 and 5, when the value of the 
chemical potential is less than -2 for each U, the magnetization curve consists of one part 
(broken curve). In the case where the value of the chemical potential is higher than the 
value of the right end of each curve in figure 4, the electron density is already half filled 
at h = 0, and the magnetization curve is the same as the half-filling one. As a result, it is 
found that there is an additional phase transition in the range of the p curve in figure 4. 
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In summary, we have shown that the one-dimensional Hubbard model undergoes a 
phase transition in the finitemagnetic-field region. The transition is of second order with 
a cusp in the magnetization curve. An exact curve HE = %(U, p )  is obtained from the 
Bethe unsatz solution. We ahve discussed the mechanism of this phase transition. In order 
to investigate the dimensional or model dependence of this phase transition, it is interesting 
to clarify the characteristic properties of the phase transition in higher dimensions and other 
models. 
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